
Overlapping Computation and
Communication for Advection on

Hybrid Parallel Computers
James B White III (Trey)

trey@ucar.edu
National Center for Atmospheric Research

Jack Dongarra
dongarra@eecs.utk.edu

University of Tennessee, Knoxville

Programming Weather, Climate, and Earth-System Models
on Heterogeneous Multi-Core Platforms

NCAR, September 8, 2011

based on work first presented at IPDPS, Anchorage, AK, May 17, 2011
Portions of this work were funded by the Office of Biological and Environmental Research and the Office of Advanced Scientific Computing

Research, both of the US Department of Energy. This research used resources of the OLCF at Oak Ridge National Laboratory and of NERSC
at Lawrence Berkeley National Laboratory, both of which are supported by the Office of Science of the US Department of Energy.

Test Case

• Linear advection with constant uniform velocity
• Three-dimensional cube with periodic

boundaries
• Advect Gaussian wave through cube corner

back to original position
• Strong scaling, 420x420x420
• Explicit 2nd-order single-stage integration,

3x3x3 centered stencil, 64-bit precision

Computers
Table 2.2: Technical details of tested computers.

System JaguarPF Hopper II Lens Yona
Compute nodes 18688 6392 31 16
Memory per node (GB) 16 32 64 32
AMD Opteron sockets per node 2 2 4 2
Cores per Opteron socket 6 12 4 6
Opteron clock (GHz) 2.6 2.1 2.3 2.6
Interconnect Cray SeaStar 2+ Cray Gemini DDR Infiniband QDR Infiniband
MPI Cray MPT 4.0.0 Cray MPT 5.1.3 OpenMPI 1.3.3 OpenMPI 1.7a1
NVIDIA Tesla GPU – – C1060 C2050
GPU memory (GB) – – 4 3

11

Computers
Table 2.2: Technical details of tested computers.

System JaguarPF Hopper II Lens Yona
Compute nodes 18688 6392 31 16
Memory per node (GB) 16 32 64 32
AMD Opteron sockets per node 2 2 4 2
Cores per Opteron socket 6 12 4 6
Opteron clock (GHz) 2.6 2.1 2.3 2.6
Interconnect Cray SeaStar 2+ Cray Gemini DDR Infiniband QDR Infiniband
MPI Cray MPT 4.0.0 Cray MPT 5.1.3 OpenMPI 1.3.3 OpenMPI 1.7a1
NVIDIA Tesla GPU – – C1060 C2050
GPU memory (GB) – – 4 3

11

Computers
Table 2.2: Technical details of tested computers.

System JaguarPF Hopper II Lens Yona
Compute nodes 18688 6392 31 16
Memory per node (GB) 16 32 64 32
AMD Opteron sockets per node 2 2 4 2
Cores per Opteron socket 6 12 4 6
Opteron clock (GHz) 2.6 2.1 2.3 2.6
Interconnect Cray SeaStar 2+ Cray Gemini DDR Infiniband QDR Infiniband
MPI Cray MPT 4.0.0 Cray MPT 5.1.3 OpenMPI 1.3.3 OpenMPI 1.7a1
NVIDIA Tesla GPU – – C1060 C2050
GPU memory (GB) – – 4 3

11

Implementations
• Single task (Fortran + OpenMP)
• Bulk-synchronous MPI
• MPI using nonblocking communication for overlap
• MPI using OpenMP threading for overlap
• GPU resident (CUDA Fortran)
• GPU with bulk-synchronous MPI
• GPU with MPI overlap using CUDA streams
• CPU and GPU computation with bulk-synchronous MPI
• CPU and GPU computation partitioned for overlap with

nonblocking MPI and CPU-GPU communication

CPU-GPU Domain Decomposition
global domain decomposed

into MPI-task domains!
task domain partitioned into

CPU and GPU domains!

halo for MPI
communication!

halos for CPU-GPU
communication!

CPU(s)!

GPU!

Figure 2.1: Domain decomposition for CPU-GPU implementations described in
Sections 2.3.8 and 2.3.9. The test domain is three dimensional, but this figure is
simplified to two dimensions.

16

Lines of Code

Single (with OpenMP)
Bulk Synchronous

Nonblocking Overlap
OpenMP Overlap

GPU Resident
GPU Bulk Synchronous

GPU Overlap
CPU GPU Bulk Synchronous

CPU GPU Overlap

0 225 450 675 900

Figure 2.2: Lines of Fortran code for each implementation, minus blank lines and

comments.

the GPU computation almost triples the number of lines. The combination of CPU

computation, GPU computation, and MPI parallelism is most expensive, with the full-

overlap implementation using exactly four times as many lines as the single-process

multithreaded implementation (860 versus 215).

2.4 Results

2.4.1 MPI Performance and Overlap

First I consider the potential performance improvement of MPI overlap. Figure 2.3

shows the performance of each implementation on JaguarPF for a range of core counts.

JaguarPF has no GPUs, so no GPU implementations are included. Each value is the

best result for a given number of cores, among all measured numbers of OpenMP

threads per MPI task. Because JaguarPF has two 6-core sockets per node, I include

measurements for 1, 2, 3, 6, and 12 threads per task.

18

Lines of Code

Single (with OpenMP)
Bulk Synchronous

Nonblocking Overlap
OpenMP Overlap

GPU Resident
GPU Bulk Synchronous

GPU Overlap
CPU GPU Bulk Synchronous

CPU GPU Overlap

0 225 450 675 900

Figure 2.2: Lines of Fortran code for each implementation, minus blank lines and

comments.

the GPU computation almost triples the number of lines. The combination of CPU

computation, GPU computation, and MPI parallelism is most expensive, with the full-

overlap implementation using exactly four times as many lines as the single-process

multithreaded implementation (860 versus 215).

2.4 Results

2.4.1 MPI Performance and Overlap

First I consider the potential performance improvement of MPI overlap. Figure 2.3

shows the performance of each implementation on JaguarPF for a range of core counts.

JaguarPF has no GPUs, so no GPU implementations are included. Each value is the

best result for a given number of cores, among all measured numbers of OpenMP

threads per MPI task. Because JaguarPF has two 6-core sockets per node, I include

measurements for 1, 2, 3, 6, and 12 threads per task.

18

Similar

Lines of Code

Single (with OpenMP)
Bulk Synchronous

Nonblocking Overlap
OpenMP Overlap

GPU Resident
GPU Bulk Synchronous

GPU Overlap
CPU GPU Bulk Synchronous

CPU GPU Overlap

0 225 450 675 900

Figure 2.2: Lines of Fortran code for each implementation, minus blank lines and

comments.

the GPU computation almost triples the number of lines. The combination of CPU

computation, GPU computation, and MPI parallelism is most expensive, with the full-

overlap implementation using exactly four times as many lines as the single-process

multithreaded implementation (860 versus 215).

2.4 Results

2.4.1 MPI Performance and Overlap

First I consider the potential performance improvement of MPI overlap. Figure 2.3

shows the performance of each implementation on JaguarPF for a range of core counts.

JaguarPF has no GPUs, so no GPU implementations are included. Each value is the

best result for a given number of cores, among all measured numbers of OpenMP

threads per MPI task. Because JaguarPF has two 6-core sockets per node, I include

measurements for 1, 2, 3, 6, and 12 threads per task.

18

MPI adds 50-75%

Lines of Code

Single (with OpenMP)
Bulk Synchronous

Nonblocking Overlap
OpenMP Overlap

GPU Resident
GPU Bulk Synchronous

GPU Overlap
CPU GPU Bulk Synchronous

CPU GPU Overlap

0 225 450 675 900

Figure 2.2: Lines of Fortran code for each implementation, minus blank lines and

comments.

the GPU computation almost triples the number of lines. The combination of CPU

computation, GPU computation, and MPI parallelism is most expensive, with the full-

overlap implementation using exactly four times as many lines as the single-process

multithreaded implementation (860 versus 215).

2.4 Results

2.4.1 MPI Performance and Overlap

First I consider the potential performance improvement of MPI overlap. Figure 2.3

shows the performance of each implementation on JaguarPF for a range of core counts.

JaguarPF has no GPUs, so no GPU implementations are included. Each value is the

best result for a given number of cores, among all measured numbers of OpenMP

threads per MPI task. Because JaguarPF has two 6-core sockets per node, I include

measurements for 1, 2, 3, 6, and 12 threads per task.

18

4 times the code

Best JaguarPF Performance

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000 12000 14000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Bulk Synchronous
Nonblocking Overlap

OpenMP Overlap

Figure 2.3: The best performance of each JaguarPF implementation for a range of
core counts.

19

Best JaguarPF Performance

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000 12000 14000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Bulk Synchronous
Nonblocking Overlap

OpenMP Overlap

Figure 2.3: The best performance of each JaguarPF implementation for a range of
core counts.

19

bulk synchronous
no

nb
loc

kin
g

Best Hopper-II Performance

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10000 20000 30000 40000 50000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Bulk Synchronous
Nonblocking Overlap

OpenMP Overlap

Figure 2.4: The best performance of each Hopper-II implementation for a range of
core counts.

For core counts below 4000, the implementation with overlap from nonblocking

communication (Section 2.3.3) can slightly outperform the bulk-synchronous imple-

mentation (Section 2.3.2). At 6000 and above, as the work per core dwindles, the

bulk-synchronous implementation has a significant advantage. The implementation

using an OpenMP thread for overlap (Section 2.3.4) consistently lags in performance.

Figure 2.4 shows analogous results for Hopper II. It has two 12-core sockets per

node, where each socket has two 6-core chips, so I include measurements for 1, 2,

3, 6, 12, and 24 threads per task. Likely because of the newer Gemini interconnect,

Hopper II scales better than JaguarPF, so I include results out to 49152 cores. Like

for JaguarPF, the implementation with overlap from nonblocking communication

20

Best Hopper-II Performance

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10000 20000 30000 40000 50000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Bulk Synchronous
Nonblocking Overlap

OpenMP Overlap

Figure 2.4: The best performance of each Hopper-II implementation for a range of
core counts.

For core counts below 4000, the implementation with overlap from nonblocking

communication (Section 2.3.3) can slightly outperform the bulk-synchronous imple-

mentation (Section 2.3.2). At 6000 and above, as the work per core dwindles, the

bulk-synchronous implementation has a significant advantage. The implementation

using an OpenMP thread for overlap (Section 2.3.4) consistently lags in performance.

Figure 2.4 shows analogous results for Hopper II. It has two 12-core sockets per

node, where each socket has two 6-core chips, so I include measurements for 1, 2,

3, 6, 12, and 24 threads per task. Likely because of the newer Gemini interconnect,

Hopper II scales better than JaguarPF, so I include results out to 49152 cores. Like

for JaguarPF, the implementation with overlap from nonblocking communication

20

bulk synchronous

nonblocki
ng

JaguarPF plot

Bulk-Synchronous Performance on
JaguarPF

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000 12000 14000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Threads/Task
12

6
3
2
1

Figure 2.5: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on JaguarPF for a range of core counts and various numbers of OpenMP
threads per MPI task.

(Section 2.3.3) performs slightly better than the bulk-synchronous implementation

(Section 2.3.2) for core counts below some limit, but that limit is an order of

magnitude higher on Hopper II. Again the implementation using an OpenMP thread

for overlap (Section 2.3.4) consistently lags in performance.

Figures 2.11 and 2.12, which I explain in detail in Section 2.4.4, show results for

Lens and Yona. For my test case on these smaller computers, overlap of computation

and communication improves performance little or none at all.

2.4.2 OpenMP Threads Per MPI Task

Each result in Figures 2.3 and 2.4 is for the best-performing number of OpenMP

threads per MPI task for that number of cores. Here I consider one implementation

21

Bulk-Synchronous Performance on
JaguarPF

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000 12000 14000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Threads/Task
12

6
3
2
1

Figure 2.5: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on JaguarPF for a range of core counts and various numbers of OpenMP
threads per MPI task.

(Section 2.3.3) performs slightly better than the bulk-synchronous implementation

(Section 2.3.2) for core counts below some limit, but that limit is an order of

magnitude higher on Hopper II. Again the implementation using an OpenMP thread

for overlap (Section 2.3.4) consistently lags in performance.

Figures 2.11 and 2.12, which I explain in detail in Section 2.4.4, show results for

Lens and Yona. For my test case on these smaller computers, overlap of computation

and communication improves performance little or none at all.

2.4.2 OpenMP Threads Per MPI Task

Each result in Figures 2.3 and 2.4 is for the best-performing number of OpenMP

threads per MPI task for that number of cores. Here I consider one implementation

21

each ratio best
somewhere

best ratio grows with core count

Bulk-Synchronous Performance on
Hopper II

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10000 20000 30000 40000 50000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Threads/Task
24
12

6
3
2
1

Figure 2.6: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on Hopper II for a range of core counts and various numbers of OpenMP
threads per MPI task.

22

Bulk-Synchronous Performance on
Hopper II

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10000 20000 30000 40000 50000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Threads/Task
24
12

6
3
2
1

Figure 2.6: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on Hopper II for a range of core counts and various numbers of OpenMP
threads per MPI task.

22

best ratio grows with
core count

24 never best

GPU-Resident Performance on Lens

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (
G

F
)

Y Block

X Block
16
32
64

128

Figure 2.9: Performance of the GPU-resident implementation (Section 2.3.5) on
Lens using a variety of two-dimensional block sizes.

26

GPU-Resident Performance on Lens

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (
G

F
)

Y Block

X Block
16
32
64

128

Figure 2.9: Performance of the GPU-resident implementation (Section 2.3.5) on
Lens using a variety of two-dimensional block sizes.

26

32x11 used for remaining experiments

36.3 GF

GPU-Resident Performance on Yona

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (
G

F
)

Y Block

X Block
16
32
64

128

Figure 2.10: Performance of the GPU-resident implementation (Section 2.3.5) on
Yona using a variety of two-dimensional block sizes.

Figure 2.9 shows the performance on Lens for a variety of two-dimensional block

sizes. The C1060 GPUs on Lens support three-dimensional block sizes of up to 512

elements, and they have a “warp” size of 32. Memory access is fastest for contiguous

blocks of at least a half warp, so I only consider x dimensions of 16, 32, 64, and 128. I

use two-dimensional blocks instead of three because they allow better memory reuse

in my test. I vary the y dimension up to the maximum total size of 512 elements.

An x dimension of 32, the warp size, tends to provide the best performance, with

the top performance coming from a block size of 32× 11. I use this block size for all

my parallel GPU experiments on Lens. (See Datta et al. (2008) for an investigation

of automatic tuning of GPU block size.)

Figure 2.10 shows the analogous performance on Yona. The C2050 GPUs on Yona

support block sizes of up to 1024 elements, and they have a “warp” size of 32. Again,

27

GPU-Resident Performance on Yona

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (
G

F
)

Y Block

X Block
16
32
64

128

Figure 2.10: Performance of the GPU-resident implementation (Section 2.3.5) on
Yona using a variety of two-dimensional block sizes.

Figure 2.9 shows the performance on Lens for a variety of two-dimensional block

sizes. The C1060 GPUs on Lens support three-dimensional block sizes of up to 512

elements, and they have a “warp” size of 32. Memory access is fastest for contiguous

blocks of at least a half warp, so I only consider x dimensions of 16, 32, 64, and 128. I

use two-dimensional blocks instead of three because they allow better memory reuse

in my test. I vary the y dimension up to the maximum total size of 512 elements.

An x dimension of 32, the warp size, tends to provide the best performance, with

the top performance coming from a block size of 32× 11. I use this block size for all

my parallel GPU experiments on Lens. (See Datta et al. (2008) for an investigation

of automatic tuning of GPU block size.)

Figure 2.10 shows the analogous performance on Yona. The C2050 GPUs on Yona

support block sizes of up to 1024 elements, and they have a “warp” size of 32. Again,

27

32x8 used for remaining experiments

86.2 GF

Best Performance on Lens

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250

P
er

fo
rm

an
ce

 (
G

F
)

Cores

CPU GPU Overlap
CPU GPU Bulk Sync

Bulk Sync
Nonblocking Overlap

OpenMP Overlap
GPU Overlap

GPU Bulk Sync

Figure 2.11: The best performance of each Lens implementation for a range of core
counts. The GPU implementations use one GPU per 16 cores.

the best performance comes from an x block size of 32, but with a slightly smaller y

block size of 8. I use this block size, 32× 8, for all my parallel GPU experiments on

Yona.

2.4.4 Parallel GPU Performance and Overlap

Figure 2.11 shows the performance of each implementation on Lens for a range of core

counts. Each value is the best performance for that implementation, among a variety

of threads per task and, where applicable, box thicknesses (from Figure 2.1). The

CPU-only implementations benefit little from overlap, but the GPU implementations

benefit greatly from overlap, particularly for the full-overlap case (Section 2.3.9),

where CPU computation, GPU computation, MPI communication, and CPU-GPU

28

(1 GPU per 16 cores)

Best Performance on Lens

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250

P
er

fo
rm

an
ce

 (
G

F
)

Cores

CPU GPU Overlap
CPU GPU Bulk Sync

Bulk Sync
Nonblocking Overlap

OpenMP Overlap
GPU Overlap

GPU Bulk Sync

Figure 2.11: The best performance of each Lens implementation for a range of core
counts. The GPU implementations use one GPU per 16 cores.

the best performance comes from an x block size of 32, but with a slightly smaller y

block size of 8. I use this block size, 32× 8, for all my parallel GPU experiments on

Yona.

2.4.4 Parallel GPU Performance and Overlap

Figure 2.11 shows the performance of each implementation on Lens for a range of core

counts. Each value is the best performance for that implementation, among a variety

of threads per task and, where applicable, box thicknesses (from Figure 2.1). The

CPU-only implementations benefit little from overlap, but the GPU implementations

benefit greatly from overlap, particularly for the full-overlap case (Section 2.3.9),

where CPU computation, GPU computation, MPI communication, and CPU-GPU

28

GPU resident

almost 2x

(1 GPU per 16 cores)

Best Performance on Yona

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160

P
er

fo
rm

an
ce

 (
G

F
)

Cores

CPU GPU Overlap
CPU GPU Bulk Sync

GPU Overlap
GPU Bulk Sync

Bulk Sync
Nonblocking Overlap

OpenMP Overlap

Figure 2.12: The best performance of each Yona implementation for a range of core
counts. The GPU implementations use one GPU per 12 cores.

communication can occur concurrently. In fact, the best CPU-GPU performance

exceeds the sum of the best CPU-only performance plus the best GPU-computation

performance.

The results for Yona are still more striking. Figure 2.12 shows the best

performance of each implementation for a range of core counts. The GPUs are a

larger fraction of the computational power on Yona than on Lens, so the performance

of the best CPU-GPU implementation is more than four times the performance of

the best CPU-only implementation.

29

(1 GPU per 12 cores)

Best Performance on Yona

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160

P
er

fo
rm

an
ce

 (
G

F
)

Cores

CPU GPU Overlap
CPU GPU Bulk Sync

GPU Overlap
GPU Bulk Sync

Bulk Sync
Nonblocking Overlap

OpenMP Overlap

Figure 2.12: The best performance of each Yona implementation for a range of core
counts. The GPU implementations use one GPU per 12 cores.

communication can occur concurrently. In fact, the best CPU-GPU performance

exceeds the sum of the best CPU-only performance plus the best GPU-computation

performance.

The results for Yona are still more striking. Figure 2.12 shows the best

performance of each implementation for a range of core counts. The GPUs are a

larger fraction of the computational power on Yona than on Lens, so the performance

of the best CPU-GPU implementation is more than four times the performance of

the best CPU-only implementation.

29

GPU resident

over 2.6x

(1 GPU per 12 cores)

CPU-GPU Overlap Performance on
Lens

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300

P
er

fo
rm

an
ce

 (
G

F
)

Cores (1 GPU per 16 Cores)

Threads/Task, Box Width
16, 2
16, 4
16, 6

8, 4
8, 11

Figure 2.13: The performance of the CPU-GPU overlap implementation

(Section 2.3.9) on Lens for various combinations of OpenMP threads per MPI task

and box thickness.

30

CPU-GPU Overlap Performance on
Lens

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300

P
er

fo
rm

an
ce

 (
G

F
)

Cores (1 GPU per 16 Cores)

Threads/Task, Box Width
16, 2
16, 4
16, 6

8, 4
8, 11

Figure 2.13: The performance of the CPU-GPU overlap implementation

(Section 2.3.9) on Lens for various combinations of OpenMP threads per MPI task

and box thickness.

30

threa
ds/ta

sk g
oes u

p

box w
idth goes d

own

CPU-GPU Overlap Performance on
Yona

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160 180

P
er

fo
rm

an
ce

 (
G

F
)

Cores (1 GPU per 12 Cores)

Threads/Task, Box Width
12, 1
6, 1
6, 3

Figure 2.14: The performance of the CPU-GPU overlap implementation

(Section 2.3.9) on Yona for various combinations of OpenMP threads per MPI task

and box thickness.

2.4.5 CPU-GPU Load Balancing and Overlap

Next I consider the performance of the CPU-GPU overlap implementation for different

numbers of threads per task and different box thicknesses. Figure 2.13 shows this

performance on Lens. Each combination plotted has the best performance for at

least one core count. In general, the best performance comes from few tasks per

node, and the best box width decreases with increasing core count. This decrease

makes sense because the amount of work per core also decreases with core count.

Figure 2.14 shows the performance of the CPU-GPU overlap implementation on

Yona. Again, each combination plotted has the best performance for at least one core

count. Like for Lens, the best performance comes from few tasks per node, often just

one task.

31

CPU-GPU Overlap Performance on
Yona

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160 180

P
er

fo
rm

an
ce

 (
G

F
)

Cores (1 GPU per 12 Cores)

Threads/Task, Box Width
12, 1
6, 1
6, 3

Figure 2.14: The performance of the CPU-GPU overlap implementation

(Section 2.3.9) on Yona for various combinations of OpenMP threads per MPI task

and box thickness.

2.4.5 CPU-GPU Load Balancing and Overlap

Next I consider the performance of the CPU-GPU overlap implementation for different

numbers of threads per task and different box thicknesses. Figure 2.13 shows this

performance on Lens. Each combination plotted has the best performance for at

least one core count. In general, the best performance comes from few tasks per

node, and the best box width decreases with increasing core count. This decrease

makes sense because the amount of work per core also decreases with core count.

Figure 2.14 shows the performance of the CPU-GPU overlap implementation on

Yona. Again, each combination plotted has the best performance for at least one core

count. Like for Lens, the best performance comes from few tasks per node, often just

one task.

31

box w
idth sta

rts
sm

all, g
oes

sm
aller

threa
ds/ta

sk
goes

up

Overlapping Computation and Communication
for Advection on Hybrid Parallel Computers

• MPI overlap less important for this test
• But tuning threads/task is important
• Overlapping CPU computation, GPU computation,

MPI communication, and CPU-GPU communication
- Improves performance by more than 2x
- Matches GPU-resident performance per GPU

• Best performance from giving minimal (but non-
vanishing) work to CPU

• Performance comes at a 4x cost in lines of code

Overlapping Computation and
Communication for Advection on

Hybrid Parallel Computers
James B White III (Trey)

trey@ucar.edu
National Center for Atmospheric Research

Jack Dongarra
dongarra@eecs.utk.edu

University of Tennessee, Knoxville

Programming Weather, Climate, and Earth-System Models
on Heterogeneous Multi-Core Platforms

NCAR, September 8, 2011

based on work first presented at IPDPS, Anchorage, AK, May 17, 2011
Portions of this work were funded by the Office of Biological and Environmental Research and the Office of Advanced Scientific Computing

Research, both of the US Department of Energy. This research used resources of the OLCF at Oak Ridge National Laboratory and of NERSC
at Lawrence Berkeley National Laboratory, both of which are supported by the Office of Science of the US Department of Energy.

